• General Systems, Gravitation, and the Unified Field Theory

    "Noether's Theorem" states that in a multicomponent field such as the electromagnetic field (or the metric field of spacetime), symmetries are associated with conservation laws and vice versa. In matter, light's (broken) symmetries are conserved by charge and spin; in spacetime, light's symmetries are protected by inertial forces, and conserved (when broken) by gravitational forces. All forms of energy originate as light; matter carries charges which are the symmetry/entropy debts of the light which created it (both concepts are required to fully integrate gravity - which has a double conservation role - with the other forces). Charges produce forces which act to return the material system to its original symmetric state (light), repaying matter's symmetry/entropy debts. Repayment is exampled by any spontaneous interaction producing net free energy, including: chemical reactions and matter-antimatter annihilation reactions; radioactivity, particle and proton decay; the nucleosynthetic pathway of stars, and Hawking's "quantum radiance" of black holes. Identifying the broken symmetries of light associated with each of the 4 charges and forces of physics is the first step toward a conceptual unification. The charges of matter are the symmetry debts of light. In weak gravitational fields (as on planet Earth), gravity only pays the entropy "interest" on the symmetry debt of matter, converting space to time, providing an alternative entropic dimension (history) in which charge conservation (and causality) can have an extended significance. In stronger fields (as on our Sun), gravity also pays the "principal" of matter's symmetry debt, converting mass to light; this latter reaction goes to completion via Hawking's "quantum radiance" of black holes. The symmetry-conserving requirement of charge invariance (and of "Lorentz invariance" in Special Relativity) is the key to understanding the local action of the forces, including the quantization of charge and other conserved parameters. While atomic nuclei promote symmetry conservation through an exothermic nucleosynthetic pathway in stars, their associated electron shells create life through a negentropic chemical pathway on planets. Using energy and heavy elements ultimately provided by gravity, the information pathway of biology is the means whereby the universe becomes aware of and experiences itself, including evolving new modes of creativity. Carbon with its multiple 4x3 fractal resonances (5) is the crucial link between the abiotic and biotic metrics of the Cosmos.

Recent Articles

Gravity, Entropy, and Thermodynamics: Part 2

Abstract

The intrinsic motions of light, time, and gravity are primordial forms (“drives”) of entropy, causing: 1) the creation, expansion, and cooling of space; 2) the creation, expansion, and aging of history; 3) the creation of historic spacetime, respectively. The charges of matter are the symmetry debts of light (Noether’s Theorem). Gravity pays the entropy-“interest” on matter’s symmetry debt by creating time from space – giving charge conservation an extended, causal significance in the time dimension. Light’s spatial entropy drive and expansion funds matter’s historical entropy drive and expansion, via the gravitational conversion of space to time; cosmic spatial expansion decelerates in consequence. Gravity pays the energy-“principal” of matter’s symmetry debt by the conversion of bound to free energy – via the nucleosynthetic pathway in stars, and via Hawking’s “quantum radiance” of black holes. The global gravitational field is reduced, as mass is converted to light; cosmic spatial expansion accelerates in consequence.

Advertisements

Gravity, Entropy, and Thermodynamics: Part I

Gravity is Matter's Memory it Once was Light

The intrinsic motions of light, time, and gravity are primordial forms (“drives”) of entropy, causing: 1) the creation, expansion, and cooling of space; 2) the creation, expansion, and aging of history; 3) the creation of historic spacetime, respectively. The charges of matter are the symmetry debts of light (Noether’s Theorem). Gravity pays the entropy-“interest” on matter’s symmetry debt by creating time from space – giving charge conservation an extended, causal significance in the time dimension. Light’s spatial entropy drive and expansion funds matter’s historical entropy drive and expansion, via the gravitational conversion of space to time; cosmic spatial expansion decelerates in consequence. Gravity pays the energy-“principal” of matter’s symmetry debt by the conversion of bound to free energy – via the nucleosynthetic pathway in stars, and via Hawking’s “quantum radiance” of black holes. The global gravitational field is reduced, as mass is converted to light; cosmic spatial expansion accelerates in consequence.

The Conversion of Space to Time by Gravity

The rationale for gravity begins with the creation of the Cosmos – the negative energy of gravity is necessary to balance the positive energy of the “Big Bang”, so that the “Creation Event” requires zero net energy. This is the time when gravity is joined with the other forces in equal strength, and bound energy (mass) is created from free energy (light) and the structural metric of spacetime. Initially, bound energy is in the form of matter-antimatter pairs, so that creation is initiated from a state of zero net charge as well as zero net energy. Beginning in such a state of complete neutrality (perhaps as a giant quantum fluctuation of the “vacuum”, an “inflationary bubble”, or Divine Fiat), the Universe can only evolve into a state of complete conservation. (“Creation” scenarios take place within the “Multiverse”.)
Following on from its primary role of providing negative energy during the “Big Bang”, gravity plays two further major conservation roles in the evolving universe: 1) the conversion of space to time (the role we see on Earth); 2) the conversion of bound to free energy (in stars and via Hawking’s “quantum radiance” of black holes). The first role conserves the entropy drive (“intrinsic motion”) of light (free electromagnetic energy); the second role conserves light’s “non-local” distributional and metric symmetry (obeying Noether’s Theorem). These secondary conservation roles are natural consequences of the mode of action of gravity’s primary role, which is the creation of negative energy and entropy via the contraction and destruction of space (creating time), in contradistinction to the expansion and creation of space by the positive energy and entropy of light’s intrinsic motion.

The “Tetrahedron Model” vs the “Standard Model” of Physics: A Comparison

Qualitative vs Quantitative Models of the Cosmos

Generally speaking, the “Tetrahedron Model” addresses symmetry-breaking and symmetry conservation in the macro-physical “rebound” phase of cosmic evolution (the current era of symmetry restoration, in which we live), while the “establishment’s” “Standard Model” addresses symmetry-breaking and symmetry conservation in the microphysical “cascade” phase of cosmic devolution, the period of the “Big Bang” which brings the material Cosmos into being. Noether’s Theorem of symmetry conservation provides the theoretical basis for unifying the “Standard Model” and the “Tetrahedron Model”, indicating a broad pathway of conservation law leading toward Einstein’s dream: the Unified Field Theory of physics. (See: “Table of the Higgs Cascade”.)
The Charges of matter are the symmetry debts of light (Noether’s Theorem). All forces spontaneously work together to return the asymmetric material system of bound electromagnetic energy to its original state, free electromagnetic energy, or perfectly symmetric light.

Postscript to: Spiritual and Scientific Principles of the Cosmic Tetrahedron Model

Information vs Causality in the "Tetrahedron Model"

While “Information” is a good and very general characterization of the fundamental significance of matter, both for the “Tetrahedron Model” and the Universe, it is not quite “active” enough in its meaning to successfully complement and connect to the other three conservation principles of the Tetrahedron Model. “Information” is an energy state or configuration, whereas the Conservation of Energy, Entropy, and the Conservation of Symmetry are aggressively protected conservation principles. Causality is also an actively protected conservation principle, and it connects with the other three in a very profound and illuminating way, as we shall hopefully see below. Meanwhile, although “Information” is to be demoted to a secondary position in terms of activity or action among the “Tetragrammaton” of conservation laws, it obviously remains of first importance as regards the description of the significance of the system in its entirety. It is in fact the potent combination of Causality and Information that makes up matter’s “causal matrix” within the conservation domain of historic spacetime, the “Karma” and “Akashic Record” of metaphysical systems of thought. Causality and Information depend upon each other for much of their meaning, but the linkage to the remaining conservation laws is clearer and stronger in the case of Casualty. Finally, Causality necessarily implies Information, but not the reverse. Information therefore remains as a corollary of Causality. Information is a conserved parameter in quantum mechanics and in historical spacetime.

Spiritual and Scientific Principles of the “Tetrahedron Model”

The realm of matter is a conserved, asymmetric, local form of the “ideal” global realm of light and perfect symmetry. It is due to its asymmetric character, expressed as charge and information, and its entropic drives, both positive and negative, that this alternative form of reality has the potential not just for conservation, but for change, growth, and evolution, even bringing forth life from inanimate atoms. Life evolves to self-knowledge, explores the Cosmos and new modes of creativity, producing new forms of beauty. The four principles of the “Tetrahedron Model” (conservation of energy, entropy, conservation of symmetry, causality) are as much “spiritual” principles of “divine law” as they are “scientific” principles of “natural law”. This is another example of the convergence of physical scientific thought and metaphysical, spiritual, or religious thought, of the merging of rational and intuitive world views. The”Tetrahedron Model” represents a fundamental example and iteration of a 4×3 algorithmic hierarchy of fractal models, developed in the context and format of”General Systems”. “General Systems” is a synthetic conceptual science which excels at bridging apparently disparate disciplines and world views. I will consider each of the 4 principles in turn.

A General Systems Approach to the Unified Field Theory – Part 4 (General Systems Discussion)

The author views certain religious, mythological, astrological, and occult “World Systems” or cosmologies as examples of ancient, intuitive General Systems which display relevant features of the universal 4×3 fractal algorithm, a pattern also seen in today’s “scientific” or “rational” cosmologies. These intuitive systems are examined in the context of their General Systems properties only, without endorsement in any other sense.

Symmetry Principles of the Unified Field Theory: Part 3 of 3

The Cosmos begins with a free form of electromagnetic energy, light, the purest, simplest, and most symmetric form of energy known. through weak-force symmetry-breaking, the primordial light energy is converted into bound forms of electromagnetic energy: atomic matter. Atomic matter is a temporally conserved form of light’s spatial energy expression. In matter, light’s raw energy is conserved as mass and momentum; light’s symmetry is conserved as charge and spin; light’s entropy is conserved as gravity; light’s continuity is conserved as temporal causality. Energy Conservation, Symmetry Conservation, Entropy, and Causality are the four principle conservation parameters of the “Tetrahedron Model”, and constitute the foundation of natural or physical law which underlies and supports the Unified Field Theory of the four physical forces. (See:”The ‘Tetrahedron Model’ of the Unified Field Theory”). In this paper we explore the connections between of the four physical forces, with special emphasis upon their symmetry relations under the unifying mantle of Noether’s symmetry conservation Theorem: “The charges of matter are the symmetry debts of light”. The particles of matter bear light’s symmetry debts as charges; these charges produce forces which act to return the asymmetric massive system of matter to its symmetric massless origin in light.

Symmetry Principles of the Unified Field Theory (a “Theory of Everything”) – Part 2

“Noether’s Theorem” states that in a multicomponent field such as the electromagnetic field (or the metric field of spacetime), symmetries are associated with conservation laws and vice versa. In matter, light’s (broken) symmetries are conserved by charge and spin; in spacetime, light’s symmetries are protected by inertial forces, and conserved (when broken) by gravitational forces. All forms of energy originate as light; matter carries charges which are the symmetry/entropy debts of the light which created it (both concepts are required to fully integrate gravity – which has a double conservation role – with the other forces). Charges produce forces which act to return the material system to its original symmetric state (light), repaying matter’s symmetry/entropy debts. Repayment is exampled by any spontaneous interaction producing net free energy, including: chemical reactions and matter-antimatter annihilation reactions; radioactivity, particle and proton decay; the nucleosynthetic pathway of stars, and Hawking’s “quantum radiance” of black holes. Identifying the broken symmetries of light associated with each of the 4 charges and forces of physics is the first step toward a conceptual unification.
The charges of matter are the symmetry debts of light. In weak gravitational fields (as on planet Earth), gravity only pays the entropy “interest” on the symmetry debt of matter, converting space to time, providing an alternative entropic dimension (history) in which charge conservation (and causality) can have an extended significance. In stronger fields (as on our Sun), gravity also pays the “principal” of matter’s symmetry debt, converting mass to light; this latter reaction goes to completion via Hawking’s “quantum radiance” of black holes.
The symmetry-conserving requirement of charge invariance (and of “Lorentz invariance” in Special Relativity) is the key to understanding the local action of the forces, including the quantization of charge and other conserved parameters.
While atomic nuclei promote symmetry conservation through an exothermic nucleosynthetic pathway in stars, their associated electron shells create life through a negentropic chemical pathway on planets. Using energy and heavy elements ultimately provided by gravity, the information pathway of biology is the means whereby the universe becomes aware of and experiences itself, including evolving new modes of creativity. Carbon with its multiple 4×3 fractal resonances (5) is the crucial link between the abiotic and biotic metrics of the Cosmos.

Symmetry Principles of the Unified Field Theory: Part 2 of 3

Gravity is Both a Symmetry Debt and an Entropy Debt of Light's Intrinsic Motion

The charges of matter are the symmetry debts of light (Noether’s Theorem). All forces act spontaneously to return the asymmetric realm of matter to its symmetric origin in light. Tracing the origin of all charges and forces to broken symmetries of light (including gravitation) is the first step in formulating a conceptual unification among the four forces of physics.

  1. Gravity, Entropy, and Thermodynamics: Part 2
  2. Gravity, Entropy, and Thermodynamics: Part I
  3. The Conversion of Space to Time by Gravity
  4. The “Tetrahedron Model” vs the “Standard Model” of Physics: A Comparison
  5. Postscript to: Spiritual and Scientific Principles of the Cosmic Tetrahedron Model
  6. Spiritual and Scientific Principles of the “Tetrahedron Model”
  7. A General Systems Approach to the Unified Field Theory – Part 4 (General Systems Discussion)
  8. Symmetry Principles of the Unified Field Theory: Part 3 of 3
  9. Symmetry Principles of the Unified Field Theory (a “Theory of Everything”) – Part 2
  10. Symmetry Principles of the Unified Field Theory: Part 2 of 3
  11. Symmetry Principles of the Unified Field Theory: Part 2
  12. The Particle Table
  13. Symmetry Principles of the Unified Field Theory (Part 1 of 3)
  14. An Introduction to the Papers (Unified Field Theory)
  15. Proton Decay and the “Heat Death” of the Cosmos
  16. Proton Decay and the “Heat Death” of the Cosmos
  17. The Origin of Matter and Information
  18. Introduction to the Higgs Boson Papers
  19. Higgs Table: Unified Force Eras of the “Big Bang”
  20. The Higgs Boson and the Weak Force IVBs: Parts II -IV
  21. The Higgs Boson vs the Spacetime Metric
  22. The Weak Force: Identity or Number Charge
  23. Introduction to The Weak Force
  24. A Description of Gravitation
  25. Introduction to Gravitation
  26. Introduction to The Weak Force
  27. The Weak Force: Identity or Number Charge
  28. A Spacetime map of the Universe: Implications for Cosmology
  29. Negentropic Information
  30. Synopsis of the ‘Tetrahedron Model’
  31. Time and Entropy
  32. Noether`s Theorem and Einstein’s “Interval”
  33. The Intrinsic Motions of Matter
  34. Light and Matter – a Synopsis
  35. A Short Course in the Unified Field Theory
  36. The Information Pathway
  37. Sect. VI: Introduction to Information
  38. Introduction to Fractals
  39. Introduction to General Systems, Complex Systems
  40. A Rationale for Gravitation
  41. About Gravity
  42. Gravity, Entropy, and Thermodynamics: Part 2
  43. A Description of Gravitation
  44. Spatial vs Temporal Entropy
  45. Introduction to Entropy
  46. The Human Connection
  47. Global-Local Gauge Symmetries and the “Tetrahedron Model” Part I: Postscript
  48. Global and Local Gauge Symmetry in the “Tetrahedron Model”: Part I
  49. Global and Local Gauge Symmetries: Part IV
  50. Global and Local Gauge Symmetries: Part V
  51. Global-Local Gauge Symmetry: Part III: The Weak Force
  52. Global and Local Gauge Symmetries: Part II (Gravitation, Section A)
  53. Global and Local Gauge Symmetry: Part II (Gravitation, Section B)
  54. The Origin of Matter and Information
  55. Gravity, Entropy, and Thermodynamics: Part I
  56. The Conversion of Space to Time
  57. The Short-Range or “Particle” Forces
  58. The Time Train
  59. Extending Einstein’s Equivalence Principle: Symmetry Conservation
  60. Introduction to Gravitation
  61. Symmetry Principles of the Unified Field Theory: Part I
  62. The Higgs Boson vs the Spacetime Metric
  63. de Broglie Matter Waves and the Evolution of Consciousness
  64. Nature’s Fractal Pathway
  65. Teilhard de Chardin – Prophet of the Information Age
  66. The Double Conservation Role of Gravity
  67. The Higgs Boson and the Weak Force IVBs: Parts II -IV
  68. Higgs Table: Unified Force Eras of the “Big Bang”
  69. The Higgs Boson and the Weak Force IVBs
  70. Introduction to the Higgs Boson Papers
  71. The Strong Force: Two Expressions
  72. Table of Forces and Energy States
  73. The Origin of Space and Time
  74. “Inflation” and the “Big Crunch”
  75. The “W” Intermediate Vector Boson and the Weak Force Mechanism
  76. The Weak Force Mechanism and the “W” IVB (Intermediate Vector Boson):
  77. Physical Elements of the “Spacetime Map”
  78. The Traveling Twins Paradox
  79. Currents of Entropy and Symmetry
  80. The Half-Life of Proton Decay
  81. Spiritual and Scientific Principles of the “Tetrahedron Model”
  82. An Introduction to the Papers (Unified Field Theory)
  83. The “Spacetime Map” as a Model of Juan Maldacena’s 5-Dimensional Holographic Universe
  84. The “Tetrahedron Model” in the Context of a Complete Conservation Cycle
  85. Symmetry Principles of the Unified Field Theory: Part 3 (Summary)
  86. Symmetry Principles of the Unified Field Theory: Part 2
  87. General Systems “Hourglass” or “Grail” Diagrams
  88. PARTICLE TABLE
  89. The “Tetrahedron Model” vs the “Standard Model” of Physics: A Comparison
  90. “Dark Energy”: Does Light Create a Gravitational Field?
  91. Human Life-Span Development and General Systems Models
  92. Man’s Role in Nature
  93. Origin of Life: Newton, Darwin, and the Abundance of Life in the Universe